Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
JMIR Med Inform ; 10(3): e35190, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1742138

ABSTRACT

BACKGROUND: Patients hospitalized for a given condition may be receiving other treatments for other contemporary conditions or comorbidities. The use of such observational clinical data for pharmacological hypothesis generation is appealing in the context of an emerging disease but particularly challenging due to the presence of drug indication bias. OBJECTIVE: With this study, our main objective was the development and validation of a fully data-driven pipeline that would address this challenge. Our secondary objective was to generate pharmacological hypotheses in patients with COVID-19 and demonstrate the clinical relevance of the pipeline. METHODS: We developed a pharmacopeia-wide association study (PharmWAS) pipeline inspired from the PheWAS methodology, which systematically screens for associations between the whole pharmacopeia and a clinical phenotype. First, a fully data-driven procedure based on adaptive least absolute shrinkage and selection operator (LASSO) determined drug-specific adjustment sets. Second, we computed several measures of association, including robust methods based on propensity scores (PSs) to control indication bias. Finally, we applied the Benjamini and Hochberg procedure of the false discovery rate (FDR). We applied this method in a multicenter retrospective cohort study using electronic medical records from 16 university hospitals of the Greater Paris area. We included all adult patients between 18 and 95 years old hospitalized in conventional wards for COVID-19 between February 1, 2020, and June 15, 2021. We investigated the association between drug prescription within 48 hours from admission and 28-day mortality. We validated our data-driven pipeline against a knowledge-based pipeline on 3 treatments of reference, for which experts agreed on the expected association with mortality. We then demonstrated its clinical relevance by screening all drugs prescribed in more than 100 patients to generate pharmacological hypotheses. RESULTS: A total of 5783 patients were included in the analysis. The median age at admission was 69.2 (IQR 56.7-81.1) years, and 3390 (58.62%) of the patients were male. The performance of our automated pipeline was comparable or better for controlling bias than the knowledge-based adjustment set for 3 reference drugs: dexamethasone, phloroglucinol, and paracetamol. After correction for multiple testing, 4 drugs were associated with increased in-hospital mortality. Among these, diazepam and tramadol were the only ones not discarded by automated diagnostics, with adjusted odds ratios of 2.51 (95% CI 1.52-4.16, Q=.1) and 1.94 (95% CI 1.32-2.85, Q=.02), respectively. CONCLUSIONS: Our innovative approach proved useful in generating pharmacological hypotheses in an outbreak setting, without requiring a priori knowledge of the disease. Our systematic analysis of early prescribed treatments from patients hospitalized for COVID-19 showed that diazepam and tramadol are associated with increased 28-day mortality. Whether these drugs could worsen COVID-19 needs to be further assessed.

4.
J Med Internet Res ; 22(8): e20773, 2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-725194

ABSTRACT

BACKGROUND: A novel disease poses special challenges for informatics solutions. Biomedical informatics relies for the most part on structured data, which require a preexisting data or knowledge model; however, novel diseases do not have preexisting knowledge models. In an emergent epidemic, language processing can enable rapid conversion of unstructured text to a novel knowledge model. However, although this idea has often been suggested, no opportunity has arisen to actually test it in real time. The current coronavirus disease (COVID-19) pandemic presents such an opportunity. OBJECTIVE: The aim of this study was to evaluate the added value of information from clinical text in response to emergent diseases using natural language processing (NLP). METHODS: We explored the effects of long-term treatment by calcium channel blockers on the outcomes of COVID-19 infection in patients with high blood pressure during in-patient hospital stays using two sources of information: data available strictly from structured electronic health records (EHRs) and data available through structured EHRs and text mining. RESULTS: In this multicenter study involving 39 hospitals, text mining increased the statistical power sufficiently to change a negative result for an adjusted hazard ratio to a positive one. Compared to the baseline structured data, the number of patients available for inclusion in the study increased by 2.95 times, the amount of available information on medications increased by 7.2 times, and the amount of additional phenotypic information increased by 11.9 times. CONCLUSIONS: In our study, use of calcium channel blockers was associated with decreased in-hospital mortality in patients with COVID-19 infection. This finding was obtained by quickly adapting an NLP pipeline to the domain of the novel disease; the adapted pipeline still performed sufficiently to extract useful information. When that information was used to supplement existing structured data, the sample size could be increased sufficiently to see treatment effects that were not previously statistically detectable.


Subject(s)
Betacoronavirus , Calcium Channel Blockers/therapeutic use , Coronavirus Infections/drug therapy , Hypertension/complications , Natural Language Processing , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/complications , Data Mining , Electronic Health Records , Humans , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2 , Time Factors , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL